Közvetlen látás az, Látás – Wikipédia
Ha az érzékleteket aszerint osztályozzuk, hogy a tárgyról, eseményről milyen távolságból szerezhetünk információt, közeli és távoli érzékleteket tudunk megkülönböztetni.

A közvetlen látás az az utóbbiak közé tartozik. A távoli érzékletek klasszikus meghatározásában kulcsfontosságú az a jellemző, hogy ezek segítségével anélkül is felfogjuk a tárgyak, események jellemzőit, hogy azoknak a közvetlen közelében kellene tartózkodnunk.
Bár a hallás és a látás is a távoli érzékelés kategóriájába tartozik, a látás olyan tárgyakat, eseményeket is közvetít, amelyeknek nincs hangjuk, vagy oly messze vannak, hogy a hangjukat nem halljuk. A látás az érzékelési-észlelési folyamatok közvetlen látás az az egyik legfontosabb, úgynevezett vezető érzékleti modalitás. Olyan lényeges információkat is közvetít a világban jelen lévő tárgyakról, amelyeket a hallás nem vagy kevésbé képes közvetíteni. Ilyen a tárgyak színe, mérete, formája, téri helye, mozgása.
Mindezeket a tulajdonságokat megfelelő részletességgel csak a fény képes közvetíteni, felfogásukra pedig különböző szemtípusok differenciálódtak az élővilágban. Ezek receptorai végzik az átalakítást trandsz- dukciót. A látás tárgyalása során mindvégig azzal foglalkozunk, hogy miként közvetíti a látás a világot, mi jellemzi a látási észlelést.
Ebben a fejezetben röviden áttekintjük mindazt, ami nélkül nehezen értenénk meg a magasabb szintű folyamatokat. Elsőként arról lesz szó, hogy mi is a látható fény, miként alakul át a fény az emberi agy számára feldolgozható üzenetté, azaz akciós potenciálok sajátos mintázatává.
Anatómia: az emberi szem felépítése
A fénytől közvetlen látás az retináig A fény A fény az elektromágneses sugárzás egyik formája. A fénynek az emberi szem számára látható spektruma az elektromágneses sugárzásfajtáknak csak igen szűk tartományát jelenti.
Bővebben: Elsődleges látókéregventrális rendszer és dorzális rendszer Az OGM-ből az információ az agykéregbe jut, amelynek első állomása az elsődleges látókéreg. A látómező itt kis darabkákra van felszabdalva érző mezőmelyekben a sejtek lokális elemi tulajdonságok meglétét keresik: például különböző dőlésű vonalkákat, színeket. Az elsődleges látókéregből az információ két nagy pályán továbbítódik.
A további sugárzástípusok — csökkenő hullámhossz szerint — a váltóáram, a rádióhullám, a mikrohullám, az infravörös és az ultraibolya sugárzás, a röntgenhullám és a gamma-sugárzás. Közvetlen látás az szemlélteti a 3.
Az ilyen gyorsan terjedő sugárzással közvetített információnak az érzékelése-észlelése lehetővé teszi, hogy a tárgyakat, eseményeket megjelenésükkor minimális késleltetéssel, azaz azonnal lássuk.
A szem részei – kívül
A fény része a környezetünket alkotó elektromágneses sugárzások tengerének. Ennek a tengernek, bármilyen sugárzás-összetevőjét is vizsgáljuk, hullámai vannak; kicsik és nagyok, gyorsan és lassan ismétlődők.
A fény tehát hullámtermészetű jel, és hasonlóan minden ilyen jelhez, néhány alapvető jellemzővel írható le. A közvetlen látás az magassága az amplitúdó, a másodpercenként érkező hullámok száma a frekvencia. Magasabb frekvencia esetén például egy másodperc alatt jóval több hullám érkezik, mint alacsony frekvenciánál. Több hullám, azaz magasabb frekvencia esetén természetszerűleg a hullámcsúcsok távolsága kisebb lesz, azaz a fény hullámhossza kisebb lesz, mint közvetlen látás az frekvenciánál.

A fény hullámainak ismétlődésére, eltérően a hanghullámoktól, ahol a frekvencia a konven- cionálisan használt jellemző lásd A hallás alapvető folyamatai című fejezetbena hullámhosszt használjuk mutatóként. A hullámhossz tehát a fényenergia frekvenciájának vagy rezgésének mértéke, hullámhossznak nevezett egységekbe alakítva. A hullámhossz nem más, mint annak közvetlen látás az útnak a hossza, amelyet a sugárzás egyes hullámok rezgések között megtesz.
A hullámok távolságának mértékegysége a nanométer a közvetlen látás az milliomod része. A látható fény tartománya a és a nanométer közé esik.
- Látás 75 a táblázat szerint
- Hogy működik a látás? | A szem részei | CooperVision®
Az elektromágneses sugárzásfajták teljes tartománya, kinagyítva a látható fény szűk hullámhossztartományában a teljes spektrum A 3. Joggal elgondolkozhatunk azon, hogy mi lehet az oka annak, hogy pont erre a szűk tartományra rendezkedett be a Föld élőlényeinek a látószerve. Feltehetően fizikai és evolúciós okai vannak mindennek. Nem valószínű például, hogy a sokkal szélesebb tartományt alkotó ultraibolya vagy infravörös látási pánikrohamok felfogására kialakuló szem jól biztosította volna az élőlények alkalmazkodását a környezethez.
Elsősorban azért nem, mert a rövidebb és a hosszabb hullámhosszú energia nem nagyon alkalmas a környezet tárgyainak, eseményeinek közvetítésére.
A szemlencse domborulatát, és ezáltal a szem fókusztávolságát aszerint változtatja, hogy közeli vagy távoli tárgyra összpontosítunk akkomodáció.
A nanométernél rövidebb hullámhosszú fénnyel az a probléma, hogy a földi légkör molekulái jelentős részben elnyelik, ezért a világ tárgyaihoz el sem jut, és így vissza sem verődhet. A látható fénynél, tehát a nanométernél nagyobb hullámhosszal jellemezhető hullámokkal viszont az a probléma, hogy ezek részben vagy teljesen áthatolnak a tárgyakon, és nem verődnek visz- sza róluk ilyen az infravörös fény is. Ez egyébként a mikrohullámú készülékek működésének fizikai alapja.
A látható fény egy durván nanométeres tartományt ölel fel. Az ebbe a spektrumba tartozó hullámhosszak együtt alkotják az összetett fényt vagy fehér fényt. A csak egy hullámhosszal jellemezhető sugárzás az úgynevezett tiszta vagy egyszerű fény.

Ezekhez az emberi észlelőrendszer sajátos színélménye homályos látás az olvasástól erről a Színlátás című fejezetben bőven lesz szóa hagyományos hét alapszín: a vörös, a narancs, a sárga, a zöld, a kék, az indigókék és az ibolyaszín.
Az alacsonyabb frekvenciájú sugárzás hosszabb hullámhossz, magasabb nanométerérték a spektrum vörös végéhez, a magasabb frekvenciájú sugárzás rövidebb hullámhossz, alacsonyabb nanométerérték a spektrum ibolyaszín végéhez közelebbi tartományába tartoznak. Bár ez részben meg is határozza a szemek helyét a fejen, az evolúció során az élővilágban sokféle változat alakult ki. A gerinceseknél például elég jó összefüggést közvetlen látás az felfedezni a szemek elhelyezkedése és az állatfaj életmódja között.
Ilyen például a ragadozók szeme, amely azonos síkban helyezkedik el, biztosítva ezzel azokat a kétszemes megoldási lehetőségeket, amelyek a mélységlátáshoz nélkülözhetetlenek erről a Tér- és mélységészlelés című fejezetben bőven lesz szó.
Tudjuk azt is, hogy egyes állatok pl.
Navigációs menü
Négy izomköteg a szemgolyótól egyenesen, további két izomköteg pedig ferdén fut hátrafelé. Az egyenes izmok a szemgolyó elülső részéhez közel, eltérő helyen tapadnak. Ha az egyenes szemizom összehúzódik, a szilárd tapadási felület koponya felé húzza el a szemgolyót, ha pedig elernyed, a szem eredeti helyzetébe fordul vissza.

A középső egyenes szemizom rectus medialis az orr közelében tapad, összehúzódásakor az orr felé forgatja el a szemet. Az oldalsó egyenes szemizom rectus laterális a külső szemzug felőli oldalon tapad, összehúzódásakor oldalirányba húzza a szemet.
A felső egyenes szemizom rectus superior a közvetlen látás az tetején tapad, összehúzódásakor a szem felfelé emelkedik, a tekintet felfelé irányul. Ezzel ellentétes hatást okoz a szemgolyó függőleges alsó oldalán tapadó alsó szemizom rectus inferiormelynek összehúzódása lesüllyeszti a szemet, a tekintetet lefelé irányítja.
Oldalirányú elnézésnél mindkét szem ugyanolyan mértékben és ugyanazon irányban mozdul el. Balra nézéskor a jobb szem középső izma és a bal szem oldalsó izma húzódik össze, a jobb szem oldalsó izma és a bal szem középső izma pedig elernyed. Szemizmok és szemmozgásirány Az ember különösen gyorsan tudja mozgatni a szemét, tekintetét töredék másodperc alatt tudja egyik tárgyról a másikra irányítani.

Amikor ennek a könyvnek a lapjait olvassuk, az a benyomásunk támadhat, hogy szemünk igen gyors tempóban, balról jobbra haladva, finoman végigpásztázza az egymást követő sorokat. Mint korábban jeleztük, az önmegfigyelés tévútra vezet.

Szemünk nem úgy gyűjti be az információkat, mint azt tapasztalatainkból következtetve gondolnánk. Szemünk mozgását olvasáskor nem a folyamatos pásztázás jellemzi, hanem megállások, szünetek és újraindulások sorozatát produkálják szemmozgató izmaink. E sorokat olvasva szemünk nagy pontossággal lép tovább a kívánt szóra, szakaszra. Ezt három-három pár szem körüli extraokuláris izom működése teszi lehetővé. Az összehúzódó izmok abban az irányban mozdítják el a szemgolyót, amely részén az izom egyik vége tapad.
Az emberi szem
Az izmok másik vége stabil, nem mozgó felülethez szemgödör kapcsolódik. A mozgás mértéke az összehúzódás erősségétől, iránya pedig attól függ, hogy hol tapad a szemgolyón és a szemgödrön, illetve milyen erőfeszítést tesz a többi izom. A két szemmel való látásnál egy különleges mechanizmus biztosítja, hogy egy közeli tárgyra irányulhasson mindkét szem.
Bármily furcsa, ehhez a két szemnek ellentétes irányban kell körmozgást végeznie.